Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.163
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35457595

RESUMO

(1) Background: in patients with neurodegenerative diseases, noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists provide neuroprotective advantages. We performed memantine therapy and proved mathematical and computer modeling of neurodegenerative disease in this study. (2) Methods: a computer simulation environment of the N-methyl-D-aspartate receptor incorporating biological mechanisms of channel activation by high extracellular glutamic acid concentration. In comparison to controls, pathological models were essentially treated with doses of memantine 3−30 µM. (3) Results: the mean values and 95% CI for Shannon entropy in Alzheimer's disease (AD) and memantine treatment models were 1.760 (95% CI, 1.704−1.818) vs. 2.385 (95% CI, 2.280−2.490). The Shannon entropy was significantly higher in the memantine treatment model relative to AD model (p = 0.0162). The mean values and 95% CI for the positive Lyapunov exponent in AD and memantine treatment models were 0.125 (95% CI, NE−NE) vs. 0.058 (95% CI, 0.044−0.073). The positive Lyapunov exponent was significantly higher in the AD model relative to the memantine treatment model (p = 0.0091). The mean values and 95% CI for transfer entropy in AD and memantine treatment models were 0.081 (95% CI, 0.048−0.114) vs. 0.040 (95% CI, 0.019−0.062). The transfer entropy was significantly higher in the AD model relative to the memantine treatment model (p = 0.0146). A correlation analysis showed positive and statistically significant correlations of the memantine concentrations and the positive Lyapunov exponent (correlation coefficient R = 0.87, p = 0.0023) and transfer entropy (TE) (correlation coefficient R = 0.99, p < 0.000001). (4) Conclusions: information theory results of simulation studies show that the NMDA antagonist, memantine, causes neuroprotective benefits in patients with AD. Our simulation study opens up remarkable new scenarios in which a medical product, drug, or device, can be developed and tested for efficacy based on parameters of information theory.


Assuntos
Doença de Alzheimer , Memantina , N-Metilaspartato , Doenças Neurodegenerativas , Doença de Alzheimer/tratamento farmacológico , Simulação por Computador , Humanos , Teoria da Informação , Memantina/farmacologia , Memantina/uso terapêutico , N-Metilaspartato/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/uso terapêutico
2.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830191

RESUMO

The aim of this study is to fabricate reactive oxygen species (ROS)-sensitive nanoparticles composed of succinyl ß-cyclodextrin (bCDsu), memantine and thioketal linkages for application in Alzheimer's disease, and to investigate the suppression of N-methyl-d-aspartate (NMDA) receptor 1 (NMDAR1) in cells. Thioketal diamine was attached to the carboxyl group of bCDsu to produce thioketal-decorated bCDsu conjugates (bCDsu-thioketal conjugates) and memantine was conjugated with thioketal dicarboxylic acid (memantine-thioketal carboxylic acid conjugates). Memantine-thioketal carboxylic acid conjugates were attached to bCDsu-thioketal conjugates to produce bCDsu-thioketal-memantine (bCDsuMema) conjugates. SH-SY5Y neuroblastoma cells and U87MG cells were used for NMDAR1 protein expression and cellular oxidative stress. Nanoparticles of bCDsuMema conjugates were prepared by means of a dialysis procedure. Nanoparticles of bCDsuMema conjugates had small particle sizes less than 100 nm and their morphology was found to be spherical in transmission electron microscopy observations (TEM). Nanoparticles of bCDsuMema conjugates responded to H2O2 and disintegrated or swelled in aqueous solution. Then, the nanoparticles rapidly released memantine according to the concentration of H2O2. In an in vivo animal imaging study, thioketal-decorated nanoparticles labelled with fluorescent dye such as chlorin e6 (Ce6) showed that the fluorescence intensity was stronger in the brain than in other organs, indicating that bCDsuMema nanoparticles can efficiently target the brain. When cells were exposed to H2O2, the viability of cells was time-dependently decreased. Memantine or bCDsuMema nanoparticles did not practically affect the viability of the cells. Furthermore, a western blot assay showed that the oxidative stress produced in cells using H2O2 increased the expression of NMDAR1 protein in both SH-SY5Y and U87MG cells. Memantine or bCDsuMema nanoparticles efficiently suppressed the NMDAR1 protein, which is deeply associated with Alzheimer's disease. Fluorescence microscopy also showed that H2O2 treatment induced green fluorescence intensity, which represents intracellular ROS levels. Furthermore, H2O2 treatment increased the red fluorescence intensity, which represents the NMDAR1 protein, i.e., oxidative stress increases the expression of NMDAR1 protein level in both SH-SY5Y and U87MG cells. When memantine or bCDsuMema nanoparticles were treated in cells, the oxidative stress-mediated expression of NMDAR1 protein in cells was significantly decreased, indicating that bCDsuMema nanoparticles have the capacity to suppress NMDAR1 expression in brain cells, which has relevance in terms of applications in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Memantina/administração & dosagem , N-Metilaspartato/antagonistas & inibidores , Nanopartículas/química , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , N-Metilaspartato/metabolismo , Neuroblastoma/patologia , Imagem Óptica/métodos , Tamanho da Partícula
3.
Exp Neurol ; 337: 113575, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358869

RESUMO

To elucidate the mechanisms of memory impairment after chronic neonatal intermittent hypoxia (IH), we employed a mice model of severe IH administered at postnatal days 3 to 7. Since prior studies in this model did not demonstrate increased cell death, our primary hypothesis was that IH causes a functional disruption of synaptic plasticity in hippocampal neurons. In vivo recordings of Schaffer collateral stimulation-induced synaptic responses during and after IH in the CA1 region of the hippocampus revealed pathological late phase hypoxic long term potentiation (hLTP) (154%) that lasted more than four hours and could be reversed by depotentiation with low frequency stimulation (LFS), or abolished by NMDA and PKA inhibitors (MK-801 and CMIQ). Furthermore, late phase hLTP partially occluded normal physiological LTP (pLTP) four hours after IH. Early and late hLTP phases were induced by neuronal depolarization and Ca2+ influx, determined with manganese enhanced fMRI, and had increased both AMPA and NMDA - mediated currents. This was consistent with mechanisms of pLTP in neonates and also consistent with mechanisms of ischemic LTP described in vitro with OGD in adults. A decrease of pLTP was also recorded on hippocampal slices obtained 2 days after IH. This decrease was ameliorated by MK-801 injections prior to each IH session and restored by LFS depotentiation. Occlusion of pLTP and the observed decreased proportion of NMDA-only silent synapses after neonatal hLTP may explain long term memory, behavioral deficits and abnormal synaptogenesis and pruning following neonatal IH.


Assuntos
Hipóxia Encefálica/fisiopatologia , Potenciação de Longa Duração , Plasticidade Neuronal , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Sinalização do Cálcio , Morte Celular , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Feminino , Hipóxia Encefálica/diagnóstico por imagem , Hipóxia Encefálica/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/antagonistas & inibidores , N-Metilaspartato/metabolismo , Técnicas de Patch-Clamp
4.
Acta Neurol Belg ; 120(1): 71-82, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31190140

RESUMO

Cisplatin is an anticancer agent widely used in the treatment of malignant tumors. One of the major adverse effects of cisplatin is its neurotoxicity. Memantine, an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, has been reported to have neuroprotective effects against neurological deficits. This study therefore investigated the possible protective role of memantine as an agent to minimize the neurobehavioral toxic side effects of cisplatin. Two different therapeutic doses of memantine (5 mg/kg) and (10 mg/kg) were orally administered for 30 days to 50 male BALB/c mice divided into 5 groups: G1: no treatment; G2: cisplatin treatment; G3: memantine treatment; G4: pretreatment of (5 mg/kg) memantine with cisplatin (4 mg/kg); G5: pretreatment of 10 mg/kg memantine with cisplatin (4 mg/kg). Weekly neurobehavioral investigations were conducted using the following battery of tests: open field activity, negative geotaxis, hole-board test, swimming test, and calculation of weight. At the end of the experimental period the mice were euthanized, and immunohistochemistry was then used to measure the expression scores of nicotinic acetylcholine receptors (nAChRs) in the muscles and brain. Results revealed that mice in G2 showed a significant decrease in the ability to perform neurobehavioral tasks. The mice in G5 exhibited a significantly improved ability on these tests, indicating a complete neurobehavioral protective effect, while the mice in G4 showed partial protection. The nAChRs score showed higher expression in the case of G2 in comparison with G3, G4, and G5. Weight loss was exhibited in G2, while in G3 and G1 these values were normal. A therapeutic dose of memantine 10 mg/kg yielded more protection than 5 mg/kg in the treatment of neuropathy; this highlights the importance of using memantine to decrease the main side effects of cisplatin.


Assuntos
Antineoplásicos/toxicidade , Comportamento Animal/efeitos dos fármacos , Cisplatino/toxicidade , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memantina/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Desempenho Psicomotor/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Masculino , Memantina/administração & dosagem , Camundongos Endogâmicos BALB C , N-Metilaspartato/antagonistas & inibidores , Fármacos Neuroprotetores/administração & dosagem
5.
Neuropharmacology ; 164: 107913, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843396

RESUMO

Alcohol is commonly used as a sleep inducer/aid by humans. However, individuals diagnosed with alcohol use disorders have sleep problems. Few studies have examined the effect of ethanol on physiological features of sedation and anesthesia, particularly at high doses. This study used polysomnography and a rapid, unbiased scoring of vigilance states with an automated algorithm to provide a thorough characterization of dose-dependent acute ethanol effects on sleep and electroencephalogram (EEG) power spectra in C57BL/6J male mice. Ethanol had a narrow dose-response effect on sleep. Only a high dose (4.0 g/kg) produced a unique, transient state that could not be characterized in terms of canonical sleep-wake states, so we dubbed this novel state Drug-Induced State with a Characteristic Oscillation in the Theta Band (DISCO-T). After this anesthetic effect, the high dose of alcohol promoted NREM sleep by increasing the duration of NREM bouts while reducing wake. REM sleep was differentially responsive to the circadian timing of ethanol administration. EEG power spectra proved more sensitive to ethanol than sleep measures as there were clear effects of ethanol at 2.0 and 4.0 g/kg doses. Ethanol promoted delta oscillations and suppressed faster frequencies, but there were clear, differential effects on wake and REM EEG power based on the timing of the ethanol injection. Understanding the neural basis of the extreme soporific effects of high dose ethanol may aid in treating acute toxicity brought about by patterns of excessive binge consumption commonly observed in young people.


Assuntos
Anestesia , Depressores do Sistema Nervoso Central/farmacologia , Eletroencefalografia/efeitos dos fármacos , Etanol/farmacologia , Hipnóticos e Sedativos/farmacologia , Sono/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/antagonistas & inibidores , Polissonografia , Sono REM/efeitos dos fármacos
6.
J Recept Signal Transduct Res ; 39(5-6): 392-398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31829066

RESUMO

Schizophrenia is a major debilitating disorder worldwide. Schizophrenia is a result of multi-gene mutation and psycho-social factors. Mutated amino acid sequences in genes of DOPA such as TH, DDC, DBH, VMAT2, and NMDA (SET-1) have been implicated as major factors causing schizophrenia. In addition mutations in genes other than the DOPA genes such as RGS4, NRG1, COMT, AKT1 and DTNBP1 (SET 2) have also been implicated in the pathogenesis of schizophrenia. Several medicinal herbs and their bioactive constituents have been reported to be involved in ameliorating different neurological disorders including schizophrenia. The present study is mainly focused to study the effect of bioactive compound isolated from the celastrus panuculatus on DOPA and other related genes of schizophrenia using in silico approach. Moledular docking study was carriedout aginast all the selected targets with the lingds i.e. compound and clozapine using the autodock vina 4.0 module implemented in Pyrx 2010.12. The 3 D structures of genes of intrest were retrieved from the protein data bank (PDB). The bioavailability and pharmacological properties of the ligands were determined using OSIRIS server. The novelty of the compound was determined based on fitness, docking and bioavailability score. From the results it is observed that, the compoud has exhibited best dock score against all the selected targets than the clozapie except DBH and VMAT2 in SET-1 targets of DOPA genes. Where as the compound has shown best pharmacokinetic and biologicl property score than the clozapine. Hence, the compound can be considered for further in vitro and in vivo studies to determine the therapeutic efficacy and drug candidacy of the compound in future.


Assuntos
Di-Hidroxifenilalanina/antagonistas & inibidores , Cetonas/farmacocinética , Extratos Vegetais/química , Propano/farmacologia , Esquizofrenia/genética , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/efeitos dos fármacos , Disponibilidade Biológica , Celastrus/química , Chalconas , Clozapina/química , Simulação por Computador , Bases de Dados de Proteínas , Di-Hidroxifenilalanina/genética , Humanos , Cetonas/uso terapêutico , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular/métodos , Mutação/genética , N-Metilaspartato/antagonistas & inibidores , N-Metilaspartato/química , Extratos Vegetais/farmacologia , Propano/análogos & derivados , Esquizofrenia/tratamento farmacológico
7.
Eur J Med Chem ; 182: 111654, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31494474

RESUMO

A series of 1-benzyl-5-oxopyrrolidine-2-carboximidamide derivatives were designed and synthesized. Their protective activities against N-methyl-d-aspartic acid (NMDA)-induced cytotoxicity were investigated in vitro. All of the compounds exhibited neuroprotective activities, especially 12k, which showed higher potency than reference compound 1 (ifenprodil). Further investigation showed that 12k could attenuate Ca2+ influx and suppress the NR2B upregulation induced by NMDA. The docking results indicated that 12k could fit well into binding site of 1 in the NR2B-NMDA receptor. Additionally, 12k exhibited excellent metabolic stability. Furthermore, the results of behavioral tests showed that compound 12k could significantly improve learning and memory in vivo. These results suggested that 12k is a promising neuroprotective drug candidate and that the NR2B-NMDA receptor is a potential target of 12k.


Assuntos
Comportamento Animal/efeitos dos fármacos , Desenho de Fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pirrolidinas/farmacologia , Animais , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , N-Metilaspartato/antagonistas & inibidores , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Rev. Soc. Esp. Dolor ; 26(4): 247-250, jul.-ago. 2019. tab
Artigo em Espanhol | IBECS | ID: ibc-191042

RESUMO

El tratamiento estándar de la cefalea en racimos consiste en un tratamiento abortivo con oxígeno, triptanes, alcaloides ergóticos y/o anestésico local nasal tópico durante los episodios agudos y un tratamiento preventivo, como infiltraciones con esteroides, antagonistas de los canales del calcio y litio. Aunque la fisiopatología exacta de la cefalea en racimos no se conoce bien, se han demostrado niveles reducidos de metabolitos de quinurenina, los cuales gozan de propiedades anti-NMDA (N-metil-D-aspartato). La ketamina y el magnesio, que tienen una potente actividad antagonista NMDA, se han usado en múltiples síndromes de dolor refractario. Describimos un caso de cefalea en racimos que no respondió al tratamiento estándar y se trató de forma efectiva con infusión intravenosa de magnesio y ketamina


Standard treatment for cluster headache consists of abortive treatment with oxygen, triptans, ergot alkaloids and/or topical nasal local anesthetic during acute episodes and preventive treatment such as steroid injections, calcium channel blockers and lithium. Although the exact pathophysiology of cluster headache is not well understood, reduced serum levels of kynurenine metabolites with anti-NMDA (N-methyl-D-aspartate) properties have been demonstrated. Ketamine and magnesium, which both have potent anti-NMDA receptor activity, have been used in multiple refractory pain syndromes. We describe a case of cluster headache that was non-responsive to standard therapy and treated effectively with intravenous infusion of magnesium and ketamine


Assuntos
Humanos , Feminino , Idoso , N-Metilaspartato/antagonistas & inibidores , Cefaleia Histamínica/tratamento farmacológico , Ketamina/administração & dosagem , Sulfato de Magnésio/administração & dosagem , Infusões Intravenosas/métodos , Resultado do Tratamento , Manejo da Dor/métodos
9.
Neuromolecular Med ; 21(3): 227-238, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31313064

RESUMO

Alzheimer's disease (AD), the most common cause of dementia remains of unclear etiology with current pharmacological therapies failing to halt disease progression. Several pathophysiological mechanisms have been implicated in AD pathogenesis including amyloid-ß protein (Aß) accumulation, tau hyperphosphorylation, neuroinflammation and alterations in bioactive lipid metabolism. Sphingolipids, such as sphingosine-1-phosphate (S1P) and intracellular ceramide/S1P balance are highly implicated in central nervous system physiology as well as in AD pathogenesis. FTY720/Fingolimod, a structural sphingosine analog and S1P receptor (S1PR) modulator that is currently used in the treatment of relapsing-remitting multiple sclerosis (RRMS) has been shown to exert beneficial effects on AD progression. Recent in vitro and in vivo evidence indicate that fingolimod may suppress Aß secretion and deposition, inhibit apoptosis and enhance brain-derived neurotrophic factor (BDNF) production. Furthermore, it regulates neuroinflammation, protects against N-methyl-D-aspartate (NMDA)-excitotoxicity and modulates receptor for advanced glycation end products signaling axis that is highly implicated in AD pathogenesis. This review discusses the underlying molecular mechanisms of the emerging neuroprotective role of fingolimod in AD and its therapeutic potential, aiming to shed more light on AD pathogenesis as well as direct future treatment strategies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cloridrato de Fingolimode/uso terapêutico , Fatores Imunológicos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígenos de Neoplasias/fisiologia , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/genética , Avaliação Pré-Clínica de Medicamentos , Cloridrato de Fingolimode/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Inflamação , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Modelos Biológicos , N-Metilaspartato/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Neuroimunomodulação/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Especificidade da Espécie , Esfingolipídeos/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/fisiologia
10.
Biochem Pharmacol ; 166: 56-69, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31075267

RESUMO

Fibromyalgia (FM) is a chronic pain syndrome involving complex interplay of biogenic amines and NMDA receptor mediated hypersensitization of nociceptive pathways. Clinical management of FM is poorly addressed with only a few available therapeutic options. Coumarins are active phenolic molecules of natural origin found to have broad pharmacological activities. Current investigation explores the role of naturally occurring coumarin, imperatorin in mouse model of fibromyalgia. Administration of reserpine (0.5 mg/kg, s.c.) thrice at 24 h intervals induced behavioral and neurochemical alterations characteristic of fibromyalgia. Reserpine was found to induce allodynia quantified using electronic von Frey (e-VF) and pressure application measurement (PAM) test, depression as indicated by an increased duration of immobility in forced swim test (FST), decreased motor coordination and locomotor activity in inclined plane test (IPT) and open field test (OFT) respectively. Cognitive deficits were evident by an increased latency to locate hidden platform in Morris water maze (MWM) and passive avoidance test (PAT). Reserpine treatment was found to cause an increased anxiety as revealed by increased time spent in closed arm of the elevated plus maze (EPM). Furthermore, an up- regulation in NMDA and NFκB expression in the brain and spinal cord was observed in reserpine treated groups. Administration of imperatorin (10 mg/kg, i.p) for a period of 5 days ameliorated all behavioral deficits, biochemical changes and decreased expression of NMDA and NFκB in the brain and spinal cord of treated mice. These findings indicate an interplay of NMDA/NFκB modulation by imperatorin in the reserpine induced fibromyalgia in mice.


Assuntos
Fibromialgia/tratamento farmacológico , Fibromialgia/metabolismo , Furocumarinas/uso terapêutico , N-Metilaspartato/metabolismo , NF-kappa B/metabolismo , Reserpina/toxicidade , Inibidores da Captação Adrenérgica/toxicidade , Animais , Relação Dose-Resposta a Droga , Fibromialgia/induzido quimicamente , Furocumarinas/farmacologia , Camundongos , N-Metilaspartato/agonistas , N-Metilaspartato/antagonistas & inibidores , NF-kappa B/agonistas , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Resultado do Tratamento
11.
Neuropharmacology ; 148: 284-290, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30677422

RESUMO

Recurrent panic attacks, comprising emotional and cardiovascular aversive responses, are common features in panic disorder, a subtype of anxiety disorder. The underlying brain circuitry includes nuclei of the hypothalamus, such as the dorsomedial hypothalamus (DMH). The endocannabinoid system has been proposed to modulate several biological processes in the hypothalamus. Thus, we tested the hypothesis that hypothalamic endocannabinoid signalling controls aversive responses in an animal model of panic attacks. Local infusion of NMDA into the DMH of rats induced panic-like behaviour. This effect was prevented by local, but not intraperitoneal, injection of a 2-arachidonoylglycerol (2-AG) hydrolysis inhibitor (MAGL inhibitor, URB602). The anandamide hydrolysis inhibitor (FAAH inhibitor), URB597, was ineffective. The anti-aversive action of URB602 was reversed by CB1 and CB2 antagonists (AM251 and AM630, respectively), and mimicked by CB1 and CB2 agonists (ACEA and JWH133, respectively). URB602 also prevented the cardiovascular effects of DMH-stimulation in anaesthetised animals. None of the treatments modified blood corticosterone levels. In conclusion, facilitation of 2-AG-signalling in the DMH modulates panic-like responses. The possible mechanisms comprise activation of both CB1 and CB2 receptors in this brain region.


Assuntos
Núcleo Hipotalâmico Dorsomedial/fisiopatologia , Endocanabinoides/fisiologia , Transtorno de Pânico/fisiopatologia , Animais , Ácidos Araquidônicos/farmacologia , Benzamidas/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Canabinoides/farmacologia , Carbamatos/farmacologia , Corticosterona/sangue , Núcleo Hipotalâmico Dorsomedial/efeitos dos fármacos , Indóis/farmacologia , Masculino , Microinjeções , N-Metilaspartato/antagonistas & inibidores , Transtorno de Pânico/induzido quimicamente , Transtorno de Pânico/prevenção & controle , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos
12.
Crit Care ; 23(1): 427, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888772

RESUMO

OBJECTIVE: Spreading depolarizations (SD) are characterized by breakdown of transmembrane ion gradients and excitotoxicity. Experimentally, N-methyl-D-aspartate receptor (NMDAR) antagonists block a majority of SDs. In many hospitals, the NMDAR antagonist s-ketamine and the GABAA agonist midazolam represent the current second-line combination treatment to sedate patients with devastating cerebral injuries. A pressing clinical question is whether this option should become first-line in sedation-requiring individuals in whom SDs are detected, yet the s-ketamine dose necessary to adequately inhibit SDs is unknown. Moreover, use-dependent tolerance could be a problem for SD inhibition in the clinic. METHODS: We performed a retrospective cohort study of 66 patients with aneurysmal subarachnoid hemorrhage (aSAH) from a prospectively collected database. Thirty-three of 66 patients received s-ketamine during electrocorticographic neuromonitoring of SDs in neurointensive care. The decision to give s-ketamine was dependent on the need for stronger sedation, so it was expected that patients receiving s-ketamine would have a worse clinical outcome. RESULTS: S-ketamine application started 4.2 ± 3.5 days after aSAH. The mean dose was 2.8 ± 1.4 mg/kg body weight (BW)/h and thus higher than the dose recommended for sedation. First, patients were divided according to whether they received s-ketamine at any time or not. No significant difference in SD counts was found between groups (negative binomial model using the SD count per patient as outcome variable, p = 0.288). This most likely resulted from the fact that 368 SDs had already occurred in the s-ketamine group before s-ketamine was given. However, in patients receiving s-ketamine, we found a significant decrease in SD incidence when s-ketamine was started (Poisson model with a random intercept for patient, coefficient - 1.83 (95% confidence intervals - 2.17; - 1.50), p < 0.001; logistic regression model, odds ratio (OR) 0.13 (0.08; 0.19), p < 0.001). Thereafter, data was further divided into low-dose (0.1-2.0 mg/kg BW/h) and high-dose (2.1-7.0 mg/kg/h) segments. High-dose s-ketamine resulted in further significant decrease in SD incidence (Poisson model, - 1.10 (- 1.71; - 0.49), p < 0.001; logistic regression model, OR 0.33 (0.17; 0.63), p < 0.001). There was little evidence of SD tolerance to long-term s-ketamine sedation through 5 days. CONCLUSIONS: These results provide a foundation for a multicenter, neuromonitoring-guided, proof-of-concept trial of ketamine and midazolam as a first-line sedative regime.


Assuntos
Ketamina/farmacologia , N-Metilaspartato/antagonistas & inibidores , Hemorragia Subaracnóidea/tratamento farmacológico , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Ketamina/uso terapêutico , Tempo de Internação/estatística & dados numéricos , Masculino , Midazolam/farmacologia , Midazolam/uso terapêutico , Pessoa de Meia-Idade , Fármacos Neuromusculares Despolarizantes/farmacologia , Fármacos Neuromusculares Despolarizantes/uso terapêutico , Razão de Chances , Estudos Retrospectivos , Hemorragia Subaracnóidea/fisiopatologia
13.
Handb Exp Pharmacol ; 250: 287-305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30478734

RESUMO

Fifteen to thirty percent of patients with major depressive disorder do not respond to antidepressants that target the monoaminergic systems. NMDA antagonists are currently being actively investigated as a treatment for these patients. Ketamine is the most widely studied of the compounds. A brief infusion of a low dose of this agent produces rapid improvement in depressive symptoms that lasts for several days. The improvement occurs after the agent has produced its well characterized psychotomimetic and cognitive side effects. Multiple infusions of the agent (e.g., 2-3× per week for several weeks) provide relief from depressive symptoms, but the symptoms reoccur once the treatment has been stopped. A 96-h infusion of a higher dose using add-on clonidine to mitigate the psychotomimetic effects appears to also provide relief and resulted in about 40% of the subjects still having a good response 8 weeks after the infusion. As this was a pilot study, additional work is needed to confirm and extend this finding. Nitrous oxide also has had positive results. Of the other investigational agents, CERC-301 and rapastinel remain in clinical development. When careful monitoring of neuropsychiatric symptoms has been conducted, these agents all produce similar side effects in the same dose range, indicating that NMDA receptor blockade produces both the wanted and unwanted effects. Research is still needed to determine the appropriate dose, schedule, and ways to mitigate against unwanted side effects of NMDA receptor blockade. These hurdles need to be overcome before ketamine and similar agents can be prescribed routinely to patients.


Assuntos
Transtorno Depressivo Maior , Ketamina , N-Metilaspartato/antagonistas & inibidores , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Ketamina/uso terapêutico , N-Metilaspartato/química , Projetos Piloto
14.
Int J Mol Sci ; 19(11)2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463253

RESUMO

To explore pathophysiology of schizophrenia, this study analyzed the regulation mechanisms that are associated with cystine/glutamate antiporter (Sxc), group-II (II-mGluR), and group-III (III-mGluR) metabotropic glutamate-receptors in thalamo-cortical glutamatergic transmission of MK801-induced model using dual-probe microdialysis. L-glutamate release in medial pre-frontal cortex (mPFC) was increased by systemic- and local mediodorsal thalamic nucleus (MDTN) administrations of MK801, but was unaffected by local administration into mPFC. Perfusion into mPFC of activators of Sxc, II-mGluR, and III-mGluR, and into the MDTN of activators of Sxc, II-mGluR, and GABAA receptor inhibited MK801-evoked L-glutamate release in mPFC. Perfusion of aripiprazole (APZ) into MDTN and mPFC also inhibited systemic MK801-evoked L-glutamate release in mPFC. Inhibition of II-mGluR in mPFC and MDTN blocked inhibitory effects of Sxc-activator and APZ on MK801-evoked L-glutamate release; however, their inhibitory effects were blocked by the inhibition of III-mGluR in mPFC but not in MDTN. These results indicate that reduced activation of the glutamate/NMDA receptor (NMDAR) in MDTN enhanced L-glutamate release in mPFC possibly through GABAergic disinhibition in MDTN. Furthermore, MDTN-mPFC glutamatergic transmission receives inhibitory regulation of Sxc/II-mGluR/III-mGluR functional complex in mPFC and Sxc/II-mGluR complex in MDTN. Established antipsychotic, APZ inhibits MK801-evoked L-glutamate release through the activation of Sxc/mGluRs functional complexes in both MDTN and mPFC.


Assuntos
Antiporters/metabolismo , Aripiprazol/farmacologia , Maleato de Dizocilpina/farmacologia , Ácido Glutâmico/metabolismo , N-Metilaspartato/antagonistas & inibidores , Córtex Pré-Frontal/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Tálamo/fisiopatologia , Acetilcisteína/farmacologia , Animais , Aripiprazol/administração & dosagem , Maleato de Dizocilpina/administração & dosagem , Masculino , Modelos Biológicos , Perfusão , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Tálamo/efeitos dos fármacos
15.
Neuropharmacology ; 141: 181-191, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30171986

RESUMO

α/ß-Hydrolase domain-containing 6 (ABHD6) contributes to the hydrolysis of the major endocannabinoid 2-arachidonoylglycerol (2-AG) in the central nervous system (CNS) and in the periphery. ABHD6 blockade has been proposed as novel strategy to treat multiple sclerosis (MS), based on the observation that the inhibitor WWL70 exerts protective anti-inflammatory effects in experimental autoimmune encephalomyelitis (EAE). According to recent data, WWL70 exhibits off-target anti-inflammatory activity in microglial cells and the potential of ABHD6 as drug target in MS remains controversial. Here we further investigated the role of ABHD6 during autoimmune demyelination by comparing the efficacy of two novel inhibitors with different CNS permeability in vivo. Preventive treatment with the systemically active inhibitor KT182 ameliorated the neurological signs of EAE during the time-course of disease. By contrast, administration of the peripherally restricted compound KT203 was ineffective in attenuating EAE symptomatology. Both inhibitors failed to improve corticospinal tract conduction latency and to attenuate inflammation at EAE recovery phase, despite being equally active at targeting brain ABHD6. Chronic administration of KT182 was associated to a partial loss of brain CB1 receptor coupling ability, suggesting the engagement of CB1 receptor-mediated mechanisms during the EAE disease progression. In cultured neurons, KT182 attenuated NMDA-stimulated excitotoxicity and mitochondrial calcium overload. However, these protective effects were not attributable to ABHD6, as they were not mimicked by the alternative inhibitors KT203, KT195 and WWL70. These results indicate that ABHD6 blockade exerts only modest therapeutic effects against autoimmune demyelination and call into question its utility as novel drug target in MS.


Assuntos
Benzoatos/farmacologia , Encefalomielite Autoimune Experimental/prevenção & controle , Terapia de Alvo Molecular/métodos , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Tratos Piramidais/fisiologia , Triazóis/farmacologia , Animais , Benzoatos/uso terapêutico , Compostos de Bifenilo/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cálcio/metabolismo , Carbamatos/farmacologia , Células Cultivadas , Feminino , Inflamação/prevenção & controle , Camundongos , Mitocôndrias , N-Metilaspartato/antagonistas & inibidores , N-Metilaspartato/farmacologia , Condução Nervosa/fisiologia , Piperidinas/uso terapêutico , Receptor CB1 de Canabinoide/metabolismo , Triazóis/uso terapêutico
16.
Mol Vis ; 24: 495-508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090013

RESUMO

Purpose: Retinal nitrosative stress associated with altered expression of nitric oxide synthases (NOS) plays an important role in excitotoxic retinal ganglion cell loss in glaucoma. The present study evaluated the effects of magnesium acetyltaurate (MgAT) on changes induced by N-methyl-D-aspartate (NMDA) in the retinal expression of three NOS isoforms, retinal 3-nitrotyrosine (3-NT) levels, and the extent of retinal cell apoptosis in rats. Effects of MgAT with taurine (TAU) alone were compared to understand the benefits of a combined salt of Mg and TAU. Methods: Excitotoxic retinal injury was induced with intravitreal injection of NMDA in Sprague-Dawley rats. All treatments were given as pre-, co-, and post-treatment with NMDA. Seven days post-injection, the retinas were processed for measurement of the expression of NOS isoforms using immunostaining and enzyme-linked immunosorbent assay (ELISA), retinal 3-NT content using ELISA, retinal histopathological changes using hematoxylin and eosin (H&E) staining, and retinal cell apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. Results: As observed on immunohistochemistry, the treatment with NMDA caused a 4.53-fold increase in retinal nNOS expression compared to the PBS-treated rats (p<0.001). Among the MgAT-treated groups, only the pretreatment group showed significantly lower nNOS expression than the NMDA-treated group with a 2.00-fold reduction (p<0.001). Among the TAU-treated groups, the pre- and cotreatment groups showed 1.84- and 1.71-fold reduction in nNOS expression compared to the NMDA-treated group (p<0.001), respectively, but remained higher compared to the PBS-treated group (p<0.01). Similarly, iNOS expression in the NMDA-treated group was significantly greater than that for the PBS-treated group (2.68-fold; p<0.001). All MgAT treatment groups showed significantly lower iNOS expression than the NMDA-treated groups (3.58-, 1.51-, and 1.65-folds, respectively). However, in the MgAT co- and post-treatment groups, iNOS expression was significantly greater than in the PBS-treated group (1.77- and 1.62-folds, respectively). Pretreatment with MgAT caused 1.77-fold lower iNOS expression compared to pretreatment with TAU (p<0.05). In contrast, eNOS expression was 1.63-fold higher in the PBS-treated group than in the NMDA-treated group (p<0.001). Among all treatment groups, only pretreatment with MgAT caused restoration of retinal eNOS expression with a 1.39-fold difference from the NMDA-treated group (p<0.05). eNOS expression in the MgAT pretreatment group was also 1.34-fold higher than in the TAU pretreatment group (p<0.05). The retinal NOS expression as measured with ELISA was in accordance with that estimated with immunohistochemistry. Accordingly, among the MgAT treatment groups, only the pretreated group showed 1.47-fold lower retinal 3-NT than the NMDA-treated group, and the difference was significant (p<0.001). The H&E-stained retinal sections in all treatment groups showed statistically significantly greater numbers of retinal cell nuclei than the NMDA-treated group in the inner retina. However, the ganglion cell layer thickness in the TAU pretreatment group remained 1.23-fold lower than that in the MgAT pretreatment group (p<0.05). In line with this observation, the number of apoptotic cells as observed after TUNEL staining was 1.69-fold higher after pretreatment with TAU compared to pretreatment with MgAT (p<0.01). Conclusions: MgAT and TAU, particularly with pretreatment, reduce retinal cell apoptosis by reducing retinal nitrosative stress. Pretreatment with MgAT caused greater improvement in NMDA-induced changes in iNOS and eNOS expression and retinal 3-NT levels than pretreatment with TAU. The greater reduction in retinal nitrosative stress after pretreatment with MgAT was associated with lower retinal cell apoptosis and greater preservation of the ganglion cell layer thickness compared to pretreatment with TAU.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , N-Metilaspartato/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Taurina/análogos & derivados , Taurina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Esquema de Medicação , Injeções Intravítreas , Masculino , N-Metilaspartato/efeitos adversos , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Transdução de Sinais , Tirosina/análogos & derivados , Tirosina/antagonistas & inibidores , Tirosina/metabolismo
17.
J Addict Med ; 12(3): 247-251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29401155

RESUMO

: Novel psychoactive substance use is a major social concern. Their use may elicit or uncover unpredictably as yet undescribed clinical pictures. We aimed to illustrate a multisubstance use case indistinguishable from paranoid schizophrenia, so to alert clinicians on possibly misdiagnosing substance-induced psychotic disorders. CASE REPORT: We describe a case of a 32-year-old man who started at 18 years with cannabinoids and ketamine, and is currently using N-methyl-D-aspartate (NMDA) antagonists. At age 23, he developed social withdrawal after being assaulted by a stranger, but did not consult psychiatrists until age 26; during this period, he was using internet-purchased methoxetamine and ketamine, and was persecutory, irritable, suspicious, and insomniac and discontinued all received medical prescriptions. He added dextromethorphan to his list of used substances. At age 31, while using phencyclidine, and, for the first time, methoxphenidine, he developed a religious delusion, involving God calling him to reach Him, and the near-death experiences ensured by NMDA antagonists backed his purpose. He received Diagnostic and Statistical Manual of Mental Disorders, 5th Edition diagnosis of multisubstance-induced psychotic disorder and was hospitalized 8 times, 6 of which after visiting the emergency room due to the development of extreme anguish, verbal and physical aggression, and paranoia. He reportedly used methoxphenidine, methoxyphencyclidine, ethylnorketamine, norketamine, and deschlorketamine, to achieve near-death experiences, and eventually to reach God in heavens. CONCLUSIONS: This case points to the need for better control of drugs sold on the internet. It also illustrates that people using NMDA antagonists may present clinical pictures indistinguishable from those of major psychoses and are likely to be misdiagnosed.


Assuntos
N-Metilaspartato/antagonistas & inibidores , Psicoses Induzidas por Substâncias/tratamento farmacológico , Adulto , Cicloexanonas/efeitos adversos , Cicloexilaminas/efeitos adversos , Morte , Delusões/induzido quimicamente , Dextrometorfano/efeitos adversos , Diagnóstico Diferencial , Humanos , Ketamina/efeitos adversos , Ketamina/análogos & derivados , Masculino , N-Metilaspartato/efeitos adversos , Disponibilidade de Medicamentos Via Internet , Piperidinas/efeitos adversos , Psicoses Induzidas por Substâncias/diagnóstico , Esquizofrenia Paranoide
18.
Mol Psychiatry ; 23(10): 2007-2017, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29203848

RESUMO

Conventional antidepressant medications, which act on monoaminergic systems, display significant limitations, including a time lag of weeks to months and low rates of therapeutic efficacy. GLYX-13 is a novel glutamatergic compound that acts as an N-methyl-D-aspartate (NMDA) modulator with glycine-like partial agonist properties; like the NMDA receptor antagonist ketamine GLYX-13 produces rapid antidepressant actions in depressed patients and in preclinical rodent models. However, the mechanisms underlying the antidepressant actions of GLYX-13 have not been characterized. Here we use a combination of neutralizing antibody (nAb), mutant mouse and pharmacological approaches to test the role of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TrkB) signaling in the actions of GLYX-13. The results demonstrate that the antidepressant effects of GLYX-13 are blocked by intra-medial prefrontal cortex (intra-mPFC) infusion of an anti-BDNF nAb or in mice with a knock-in of the BDNF Val66Met allele, which blocks the processing and activity-dependent release of BDNF. We also demonstrate that pharmacological inhibitors of BDNF-TrkB signaling or of L-type voltage-dependent Ca2+ channels (VDCCs) block the antidepressant behavioral actions of GLYX-13. Finally, we examined the role of the Rho GTPase proteins by injecting a selective inhibitor into the mPFC and found that activation of Rac1 but not RhoA is involved in the antidepressant effects of GLYX-13. Together, these findings indicate that enhanced release of BDNF through exocytosis caused by activation of VDCCs and subsequent TrkB-Rac1 signaling is required for the rapid and sustained antidepressant effects of GLYX-13.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Depressão/tratamento farmacológico , Ketamina/farmacologia , Masculino , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/antagonistas & inibidores , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
J Neurosci ; 37(43): 10278-10289, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28924012

RESUMO

Creutzfeldt-Jakob disease (CJD) is a neurodegenerative disorder caused by prion protein (PrP) misfolding, clinically recognized by cognitive and motor deficits, electroencephalographic abnormalities, and seizures. Its neurophysiological bases are not known. To assess the potential involvement of NMDA receptor (NMDAR) dysfunction, we analyzed NMDA-dependent synaptic plasticity in hippocampal slices from Tg(CJD) mice, which model a genetic form of CJD. Because PrP depletion may result in functional upregulation of NMDARs, we also analyzed PrP knock-out (KO) mice. Long-term potentiation (LTP) at the Schaffer collateral-commissural synapses in the CA1 area of ∼100-d-old Tg(CJD) mice was comparable to that of wild-type (WT) controls, but there was an inversion of metaplasticity, with increased GluN2B phosphorylation, which is indicative of enhanced NMDAR activation. Similar but less marked changes were seen in PrP KO mice. At ∼300 d of age, the magnitude of LTP increased in Tg(CJD) mice but decreased in PrP KO mice, indicating divergent changes in hippocampal synaptic responsiveness. Tg(CJD) but not PrP KO mice were intrinsically more susceptible than WT controls to focal hippocampal seizures induced by kainic acid. IL-1ß-positive astrocytes increased in the Tg(CJD) hippocampus, and blocking IL-1 receptor signaling restored normal synaptic responses and reduced seizure susceptibility. These results indicate that alterations in NMDA-dependent glutamatergic transmission in Tg(CJD) mice do not depend solely on PrP functional loss. Moreover, astrocytic IL-1ß plays a role in the enhanced synaptic responsiveness and seizure susceptibility, suggesting that targeting IL-1ß signaling may offer a novel symptomatic treatment for CJD.SIGNIFICANCE STATEMENT Dementia and myoclonic jerks develop in individuals with Creutzfeldt-Jakob disease (CJD), an incurable brain disorder caused by alterations in prion protein structure. These individuals are prone to seizures and have high brain levels of the inflammatory cytokine IL-1ß. Here we show that blocking IL-1ß receptors with anakinra, the human recombinant form of the endogenous IL-1 receptor antagonist used to treat rheumatoid arthritis, normalizes hippocampal neurotransmission and reduces seizure susceptibility in a CJD mouse model. These results link neuroinflammation to defective neurotransmission and the enhanced susceptibility to seizures in CJD and raise the possibility that targeting IL-1ß with clinically available drugs may be beneficial for symptomatic treatment of the disease.


Assuntos
Síndrome de Creutzfeldt-Jakob/tratamento farmacológico , Modelos Animais de Doenças , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Convulsões/tratamento farmacológico , Animais , Síndrome de Creutzfeldt-Jakob/metabolismo , Suscetibilidade a Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , N-Metilaspartato/antagonistas & inibidores , N-Metilaspartato/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Distribuição Aleatória , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
20.
JAMA Surg ; 152(7): 691-697, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28564673

RESUMO

Importance: Amid the current opioid epidemic in the United States, the enhanced recovery after surgery pathway (ERAS) has emerged as one of the best strategies to improve the value and quality of surgical care and has been increasingly adopted for a broad range of complex surgical procedures. The goal of this article was to outline important components of opioid-sparing analgesic regimens. Observations: Regional analgesia, acetaminophen, nonsteroidal anti-inflammatory agents, gabapentinoids, tramadol, lidocaine, and/or the N-methyl-d-aspartate class of glutamate receptor antagonists have been shown to be effective adjuncts to narcotic analgesia. Nonsteroidal anti-inflammatory agents are not associated with an increase in postoperative bleeding. A meta-analysis of 27 randomized clinical trials found no difference in postoperative bleeding between the groups taking ketorolac tromethamine (33 of 1304 patients [2.5%]) and the control groups (21 of 1010 [2.1%]) (odds ratio [OR], 1.1; 95% CI, 0.61-2.06; P = .72). After adoption of the multimodal analgesia approach for a colorectal ERAS pathway, most patients used less opioids while in the hospital and many did not need opioids after hospital discharge, although approximately 50% of patients received some opioid during their stay. Conclusions and Relevance: Multimodal analgesia is readily available and the evidence is strong to support its efficacy. Surgeons should use this effective approach for patients both using and not using the ERAS pathway to reduce opioid consumption.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Analgésicos Opioides/uso terapêutico , Anestesia por Condução , Dor Pós-Operatória/terapia , Acetaminofen/uso terapêutico , Aminas/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Ácidos Cicloexanocarboxílicos/uso terapêutico , Gabapentina , Humanos , Lidocaína/uso terapêutico , N-Metilaspartato/antagonistas & inibidores , Cuidados Pós-Operatórios , Pregabalina/uso terapêutico , Tramadol/uso terapêutico , Ácido gama-Aminobutírico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...